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Abstract
Motivated by the generalization of quantum theory for the case of non-
Hermitian Hamiltonians with PT symmetry, we show how a classical
cosmological model describes a smooth transition from ordinary dark energy
to the phantom one. The model is based on a classical complex Lagrangian of
a scalar field. Specific symmetry properties analogous to PT in non-Hermitian
quantum mechanics lead to purely real equations of motion.

PACS numbers: 98.80.Cq, 98.80.Jk, 11.30.Er, 02.60.Lj

1. Introduction

Complex (non-Hermitian) Hamiltonians with PT symmetry have been vigorously investigated
in quantum mechanics and quantum field theory [1]. A possibility of applications to quantum
cosmology has been pointed out in [2]. In the present contribution we focus attention on
complex classical field theory. We explore the use of a particular complex scalar field
Lagrangian, which has real solutions of the classical equations of motion. Thereby we
provide a cosmological model describing in a natural way an evolution from the big bang to
the big rip involving the transition from normal matter to phantom matter, crossing smoothly
the phantom divide line.

The interest of our approach is related to its focusing on the intersection between two
important fields of research. The basic idea can be introduced qualitatively as follows:
given a complex Lagrangian of a complex scalar field, with the complex potential V (φ),
if V (φ) is PT symmetric in the sense that V (x) is PT symmetric in quantum mechanics,
e.g. V (φ) ∼ exp(iαφ) with α real, then Lagrangian becomes real for purely imaginary φ and
furthermore the kinetic term acquires a negative sign. In order to avoid any confusion we
stress that our arguments are qualitative and PT symmetry is not to be intended in a literal
way since we will deal with spatially homogeneous scalar fields and we have introduced these
notations to refer the reader to the type of potentials and to their symmetry properties we will
consider.
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The framework in which we work is general relativity and classical cosmology. We will
provide a self-contained introduction to these topics in order that an average reader can follow
the presentation without too many difficulties.

2. Complex Lagrangians in classical field theory and cosmology

Let us consider a non-Hermitian (complex) Lagrangian of a scalar field

L = 1
2∂µφ∂µφ∗ − V (φ, φ∗), (1)

with the corresponding action,

S(φ, φ∗, g) =
∫

d4x
√

−||g||
(

L +
1

6
R(g)

)
, (2)

where ||g|| stands for the determinant of a metric gµν and R(g) is the scalar curvature term and
the Newton gravitational constant is normalized to 3/8π to simplify the Friedmann equations
further on.

We employ potentials V (φ, φ∗) satisfying the invariance condition

(V (φ, φ∗))∗ = V (φ∗, φ), (3)

while the condition

(V (φ, φ∗))∗ = V (φ, φ∗) (4)

is not satisfied. For example, such a potential can have a form

V (φ, φ∗) = V1(φ + φ∗)V2(φ − φ∗), (5)

where V1 and V2 are real functions of their arguments. If one defines

φ1 ≡ 1
2 (φ + φ∗), (6)

and

φ2 ≡ 1

2i
(φ − φ∗), (7)

one can consider potentials of the form

V (φ, φ∗) = V0(φ1) exp(iαφ2), (8)

where α is a real parameter. In the last equation one can recognize the link to the so-called
PT symmetric potentials.

Here, the functions φ1 and φ2 appear as the real and the imaginary parts of the complex
scalar field φ; however, in what follows, we shall treat them as independent spatially
homogeneous complex variables depending only on the time parameter t.

We shall consider a flat spatially homogeneous Friedmann universe with the metric

ds2 = dt2 − a2(t) dl2, (9)

satisfying the Friedmann equation

h2 = 1
2 φ̇2

1 + 1
2 φ̇2

2 + V0(φ1) exp(iαφ2). (10)

Here the variable a(t) represents a cosmological radius of the universe and the Hubble
variable h(t) ≡ ȧ

a
characterizes the velocity of expansion of the universe. The Friedmann

equation (10) is nothing but Einstein equation, for the universe filled by scalar fields.
The equations of motion for fields φ1 and φ2 have the form

φ̈1 + 3hφ̇1 + V0
′(φ1) exp(iαφ2) = 0, (11)

iφ̈2 + 3ihφ̇2 − αV0(φ1) exp(iαφ2) = 0. (12)

Equations (10)–(12) are obtained by the variation of the action (2) with the Lagrangian (1)
and the potential (8) with respect to the metric, and the scalar field variables φ1 and φ2.
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3. Cosmological solutions for accelerated universes

Let us note that the system of equations (10)–(12) can have a solution where φ1(t) is real,
while φ2 is imaginary, or, in other words

φ2(t) = −iξ(t), (13)

where ξ(t) is a real function. In terms of these two functions, our system of two real equations
can be rewritten as

φ̈1 + 3
√

1
2 φ̇2

1 − 1
2 ξ̇ 2 + V0(φ1) exp(αξ)φ̇1 + V ′

0(φ1) exp(αξ) = 0, (14)

ξ̈ + 3
√

1
2 φ̇2

1 − 1
2 ξ̇ 2 + V0(φ1) exp(αξ)ξ̇ − αV0(φ1) exp(αξ) = 0. (15)

Now, substituting φ2(t) from equation (13) into equation (10) we have the following
expression for the energy density:

ε = h2 = 1
2 φ̇2

1 − 1
2 ξ̇ 2 + V0(φ1) exp(αξ). (16)

Thus, we have paved the way to convert an action with a complex potential into the action
with real potential and hyperbolic structure of the kinetic term. Note that in the flat Friedmann
universe the energy density is always positive, being proportional to squared Hubble variable
which should be real because of the reality of geometry.

Let us emphasize that the solution which we are looking for, namely, the imaginary
solution for φ2 is the solution which can have sense for the whole system of equations of
Klein–Gordon type (11), (12) and that of Friedmann (10), because it makes the energy density
real and positive. One can trace some kind of analogy with the non-Hermitian PT symmetric
quantum theory with real spectra bounded from below. Our motivation is just to combine the
idea of (i) providing physical application for ‘PT’-symmetric potentials and of (ii) building of
a proper framework for conversion of the elliptic structure of the kinetic term for the scalar
field to the hyperbolic one. In fact, it is crucial to start from a complex Lagrangian with the
above-mentioned symmetry in order that equations (11) and (12) become real after the rotation
φ2(t) = −iξ(t).

We shall see in section 4 that one can construct such solutions so that the originally complex
Lagrangian becomes real on classical configurations while one of the scalar components
obtains the ghost (negative) sign of kinetic energy. Thereby we recover a more conventional
phantom matter starting from the complex matter with normal kinetic energy.

Now, coming back to the Einstein equations we should remember that the pressure will
be equal

p = 1
2 φ̇2

1 − 1
2 ξ̇ 2 − V0(φ1) exp(αξ). (17)

The pressure in cosmology can be negative. Moreover, the so-called dark energy, responsible
for the recently discovered phenomenon of cosmic acceleration [3], is characterized by the
negative pressure such that w ≡ p/ε < −1/3 [4]. The value w = −1 is nothing but
the cosmological constant, while the dark matter with w < −1 was dubbed as phantom
energy [5]. The phantom models have some unusual properties: to realize them one often
uses the phantom scalar field with the negative sign of kinetic term; in many models the
presence of the phantom dark energy implies the existence of the future big rip cosmological
singularity [6]. A cosmological evolution where dark energy undergoes the transition from
w > −1 to w < −1 implies some particular properties of the corresponding field-theoretical
model and is called crossing of phantom divide line [7].

From now on we show that the model introduced above is suitable for the description of
the phenomenon of the phantom divide line crossing (for further detail, see [8]).
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4. Crossing of the phantom divide line

It is easy to see that if φ̇2
1 < ξ 2 the pressure will be negative and p/ε < −1, satisfying the

phantom equation of state. Instead, when φ̇2
1 > ξ 2, the ratio between the pressure and energy

density exceeds −1 and, hence, the condition

φ̇2
1 = ξ̇ 2 (18)

corresponds exactly to the phantom divide line, which can be crossed dynamically during the
evolution of the field components φ1(t) and ξ(t).

We now provide a simple realization of this idea by an exactly solvable cosmological model
by implementing the technique for the construction of potentials for a given cosmological
evolution [9]. It is convenient to start with a cosmological evolution as given by the following
expression for the Hubble variable:

h(t) = A

t(tR − t)
. (19)

The evolution begins at t = 0, which represents a standard initial big bang cosmological
singularity, and comes to an end in the big rip type singularity at t = tR . The derivative of the
Hubble variable

ḣ = A(2t − tR)

t2(tR − t)2
(20)

vanishes at

tP = tR

2
(21)

when the universe crosses the phantom divide line.
Next, we can write the standard formulae connecting the energy density and the pressure

to the Hubble variable and its time derivative:
φ̇2

1

2
− ξ̇ 2

2
+ V0(φ1) eαξ = h2 = A2

t2(tR − t)2
, (22)

φ̇2
1

2
− ξ̇ 2

2
− V0(φ1) eαξ = −2

3
ḣ − h2 = −A(4t − 2tR + 3A)

3t2(tR − t)2
. (23)

The expression for the potential V0(φ1) follows

V0(φ1) = A(2t − tR + 3A)

3t2(tR − t)2
e−αξ . (24)

The kinetic term satisfies the equation

φ̇2
1 − ξ̇ 2 = −2A(2t − tR)

3t2(tR − t)2
. (25)

It is convenient to begin the construction with the solution for ξ . Taking into account
formulae (19) and (24) equation (15) can be rewritten as

ξ̈ + 3ξ̇
A

t (tR − t)
− αA(2t − tR + 3A)

3t2(tR − t)2
= 0. (26)

Introducing a new parameter

m ≡ 3A

tR
, (27)

equation (26) looks like

ẏ + y
mtR

t (tR − t)
− αmtR(2t + tR(m − 1))

9t2(tR − t)2
= 0, (28)
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where

y ≡ ξ̇ . (29)

The solution of equation (28) is given by

y = αmtR(tR − t)m

9tm

∫
dt

(2t + (m − 1)tR)tm−2

(tR − t)m+2
. (30)

Before considering the concrete values of m, note that the equation of state parameter w

in the vicinity of the initial big bang singularity behaves as

w = −1 +
2

m
, (31)

while approaching the final big rip singularity this parameter behaves as

w = −1 − 2

m
. (32)

Note that the range for w does not depend on α, depending only on the value of the parameter
m, which relates the scales of the Hubble variable h and of the time of the existence of the
universe tR .

Remarkably, the integral on the right-hand side of equation (30) is calculable analytically

ξ̇ = αmtR

9t (tR − t)
(33)

while

ξ = αm

9
(log t − log(tR − t)). (34)

From now on the parameter t will be dimensionless. The inclusion of characteristic time
does not change the structure of the potential because of its exponential dependence on ξ .
Substituting expression (33) into equation (25) one has

φ̇2
1 = mtR((α2m + 18)tR − 36t)

81t2(tR − t)2
. (35)

For the case α2m = 18 the function φ1(t) can be easily found from equation (35) and it looks
like

φ1 = ±4
√

m

3
Arctanh

√
tR − t

tR
. (36)

One can choose the positive sign in equation (36) without loss of generality.
Inverting equation (36) we obtain the dependence of the time parameter as a function of

φ1

t = tR

cosh2 3φ1

4
√

m

. (37)

Substituting expressions (37) and (34) into equation (24) we can obtain the explicit expression
for the potential V0(φ1):

V0(φ1) =
2 cosh6 3φ1

4
√

m

(
2 + 17 cosh2 3φ1

4
√

m

)
t2
R

. (38)

We would like to emphasize that this potential is real and even. It is interesting that the time
dependence of φ1(t) could also be found for an arbitrary value of the parameter m, but for
α2m > 18 this dependence cannot be reversed analytically and, hence, one cannot obtain the
explicit form of the potential V0(φ1).
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5. Concluding remarks and perspectives

The phantom model building has involved many different ideas. Here we have presented a
rather simple and natural cosmological toy model, linked to and inspired by such an intensively
developing branch of quantum mechanics and quantum field theory as the study of non-
Hermitian, but CPT (or PT) symmetric models. Note that there is an analogy between the
manner in which the complexity of the original Lagrangian with the standard kinetic term is
transformed into phantom-like Lagrangian, which is real but has a negative kinetic energy term
and the equivalence between PT-symmetric quantum Hamiltonians and Hermitian Hamiltonian
with variable effective mass (see e.g. [10]).

In this paper we have focused essentially on the classical field theory with a complex
potential satisfying the invariance property of equation (3). Beyond the classical limit one could
speculate on how quantum fluctuations δφ ≡ η1(x) + iη2(x) may preserve the consistency of
this approach. Assume that the fields of fluctuations respect the initial and final conditions on
a classical solution, η1(0) = η2(0) = η1(tR) = η2(tR) = 0. Then the second variation of the
action (2) reads

S(2)(η1, η2) = 1

2

∫
d4x a3(t)ηT

(−∂2
t − 3h(t)∂t − V̂ (2)(φ1,c, iφ2,c)

)
η, (39)

where ηT = (η1(x), η2(x)) is the transposed field, φ1,c ≡ φ1(t), φ2,c ≡ −iξ(t) are classical
solutions and the matrix V̂ (2) reads,

V̂ (2) =
(

∂2
φ1

V (φ1, ξ) i∂φ1∂ξV (φ1, ξ)

i∂φ1∂ξV (φ1, ξ) −∂2
ξ V (φ1, ξ)

)
. (40)

The quadratic form (39) is symmetric, with a non-Hermitian but pseudo-Hermitian matrix
σ3V̂

(2)σ3 = V̂ (2)† and the latter fact makes it possible to get real eigenvalues (or pairs of
complex conjugated ones) of the energy operator in (39). Insofar as this energy operator is
symmetric and has a 2 × 2 matrix form, one can diagonalize it4 with an (in general, non-local)
orthogonal transformation Ô so that ÔÔT = I.

Because the second variation of potential V̂ (2) has complex matrix elements, the
eigenvectors for a particular real eigenvalue will be also complex. The correct way to perform
the variation is as follows:

• First, make an appropriate complex deformation of the integration contour of variables
η1(x), η2(x) −→ η̃1(x), η̃2(x) so that the latter complex variables give rise to real ones
η = Ôη̃.

• Next, perform the diagonalization and end up with a well-defined, real energy operator,
hopefully with positive masses.

To realize this program one has to solve the one-dimensional matrix Schrödinger-like
equation. To give a concrete idea of what we have in mind we present a solvable example
of potential (only mildly related to the previous discussion), V = exp(

√
1 + α2φ1) exp(iαφ2).

Its second variation matrix is constant up to an overall factor,

V̂ (2) = V

(
1 + α2 iα

√
1 + α2

iα
√

1 + α2 −α2

)
. (41)

4 While it is not true in general for the complex symmetric matrix in arbitrary dimension as discussed for example in
[11], in the case of a quadratic form in equation (39), one can straightforwardly show the above statement by explicit
construction of the corresponding complex orthogonal 2 × 2 matrix.
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Its eigenvalues are 0, 1 and the normalized eigenvectors are eT
0 = (iα,−

√
1 + α2), eT

1 =
(
√

1 + α2, iα) so that eT
i ej = δij . The diagonalization is realized by the complex orthogonal

matrix

Ô =
(

iα −
√

1 + α2

√
1 + α2 iα

)
. (42)

The above-mentioned contour is given by η̃ = ÔT η for arbitrary real η. Thus, in spite of
non-Hermiticity of the matrix of second variation the relevant deformation of the contour
makes the action real with positive kinetic terms and masses.

As a last remark we would like to point out that in quantum mechanics, models with CPT
symmetry have been recently introduced in [12] with the difference that the charge operator is
a differential operator contributing to a definition of a pseudometric operator, whereas in the
present approach the ‘charge’ conjugation is related to a kind of internal degree of freedom.

Finally, let us recapitulate various steps of our approach.

1. We relate the possibility of a (de)-phantomization to a rotation of one of the components
of the scalar field, which gives a hyperbolic structure to the kinetic term.

2. The preceding point provides compelling reasons to start from complex PT symmetric
Lagrangian.

3. We succeed in reducing the problem to two coupled scalar fields: of course one could have
started directly from these coupled equations, but in this case, underlying CPT symmetry
and CP breaking would be hidden.

We do not claim uniqueness of our approach (see e.g. the recent paper [13], based on
the superalgebraic approach and using Grassmann vector fields as well as a more general
complexification involving the spacetime coordinates [14]), but a definite consequence turns
out to be the relation between possible phantomization and CP-breaking.
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